# SOME QUICK FORMULAS FOR THE VOLUMES OF AND THE NUMBER OF INTEGER POINTS IN HIGHER-DIMENSIONAL POLYHEDRA 

Alexander Barvinok, based joint works with J.A. Hartigan and Mark Rudelson

August 2023

## The problem

Let $P \subset \mathbb{R}^{n}$ be a polyhedron defined by the system of linear equations $A x=b$ and inequalities $x \geq 0$. Here $A$ is an $m \times n$ matrix with $\operatorname{rank} A=m<n$.

Suppose that $P$ is bounded and has a non-empty relative interior, that is, contains a point $x=\left(x_{1}, \ldots, x_{n}\right)$ where $x_{j}>0$ for $j=1, \ldots, n$.

Our goal is to estimate quickly vol $P$, the $(n-m)$-dimensional volume of $P$. When $A$ and $b$ are integer, we also want to estimate quickly $\left|P \cap \mathbb{Z}^{n}\right|$, the number of integer points in $P$.

## The entropy maximization problem

We define $f: \mathbb{R}_{+}^{n} \longrightarrow \mathbb{R}$ by

$$
f(x)=n+\sum_{j=1}^{n} \ln x_{j} \quad \text { where } \quad x=\left(x_{1}, \ldots, x_{n}\right)
$$

and find the necessarily unique $z \in P, z=\left(z_{1}, \ldots, z_{n}\right)$, such that

$$
f(z)=\max _{x \in P} f(x)
$$

The point $z$ is called the analytic center of $P$. Since relint $P \neq \emptyset$, we have $z_{j}>0$ for $j=1, \ldots, n$.

Given a bounded polyhedron $P$ defined by the system $A x=b$, $x \geq 0$, we compute its analytic center $z=\left(z_{1}, \ldots, z_{n}\right)$. Let $B$ be the $m \times n$ matrix obtained by multiplying the $j$-th column of $A$ by $z_{j}$ for $j=1, \ldots, n$. Then

$$
\mathcal{E}(A, b)=e^{f(z)} \frac{\sqrt{\operatorname{det} A A^{T}}}{\sqrt{\operatorname{det} B B^{T}}}=e^{n} z_{1} \cdots z_{n} \frac{\sqrt{\operatorname{det} A A^{T}}}{\sqrt{\operatorname{det} B B^{T}}}
$$

approximates vol $P$ within a multiplicative factor of $\gamma^{m}$, where $\gamma>0$ is an absolute constant.

Note that it scales correctly:

$$
\mathcal{E}(A, \tau b)=\tau^{n-m} \mathcal{E}(A, b) \quad \text { for } \quad \tau>0
$$

## Example: simplex

## Example

Suppose that $P$ is defined by

$$
\sum_{i=1}^{n} a_{j} x_{j}=n \quad \text { and } \quad x_{j} \geq 0 \quad \text { for } \quad j=1, \ldots, n
$$

We must have $a_{j}>0$ for $j=1, \ldots, n$. Then

$$
z=\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n}}\right) \quad \text { and } \quad \mathcal{E}(A, b)=\frac{e^{n}}{a_{1} \cdots a_{n}} \frac{\sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}}{\sqrt{n}} .
$$

On the other hand,

$$
\operatorname{vol} P=\frac{n^{n}}{n!a_{1} \cdots a_{n}} \sqrt{a_{1}^{2}+\ldots+a_{n}^{2}} .
$$

## Example: simplex

## Example



Since

$$
n!=\sqrt{2 \pi n} e^{-n} n^{n}(1+o(1)) \quad \text { as } \quad n \longrightarrow+\infty,
$$

we get

$$
\operatorname{vol} P=\frac{1}{\sqrt{2 \pi}} \mathcal{E}(A, b)(1+o(1)) \quad \text { as } \quad n \longrightarrow+\infty
$$

## Example: doubly stochastic matrices

## Example

Consider the polytope $P_{r}$ of $r \times r$ doubly stochastic matrices $X=\left(x_{i j}\right)$ :

$$
\begin{aligned}
& \sum_{j=1}^{r} x_{i j}=1 \quad \text { for } \quad i=1, \ldots, r, \quad \sum_{i=1}^{r} x_{i j}=1 \quad \text { for } \quad j=1, \ldots, r \\
& \text { and } \quad x_{i j} \geq 0 \quad \text { for } \quad i, j=1, \ldots, r .
\end{aligned}
$$

| $*$ | $*$ | $*$ | $*$ |
| :---: | :---: | :---: | :---: |
| $*$ | $*$ | $*$ | $*$ |
| $*$ | $*$ | $*$ | $*$ |
| $*$ | $*$ | $*$ | $*$ |

## Example: doubly stochastic matrices

## Example

We have $\operatorname{dim} P_{r}=(r-1)^{2}$. By symmetry, the analytic center is

$$
z_{i j}=\frac{1}{r} \quad \text { for } \quad i, j=1, \ldots, r \quad \text { and hence } \quad \mathcal{E}(A, b)=\frac{e^{r^{2}}}{r^{(r-1)^{2}}}
$$

Canfield and McKay (2009) proved that

$$
\operatorname{vol} P_{r}=e^{1 / 3} \frac{e^{r^{2}}}{(\sqrt{2 \pi})^{2 r-1} r^{(r-1)^{2}}}(1+o(1)) \quad \text { as } \quad r \longrightarrow+\infty .
$$

In Barvinok and Hartigan (2010), we called

$$
\operatorname{vol} P \approx \frac{\mathcal{E}(A, b)}{(2 \pi)^{m / 2}}
$$

Gaussian approximation and showed that it holds under some conditions (more on this later).

## Example: 3-way planar transportation polytopes

## Example

Consider the polytope $P_{r}$ of $r \times r \times r$ arrays (tensors) $X=\left(x_{i j k}\right)$ such that

$$
\begin{aligned}
& \sum_{i=1}^{r} x_{i j k}=1 \quad \text { for } \quad j, k=1, \ldots, r, \\
& \sum_{j=1}^{r} x_{i j k}=1 \quad \text { for } \quad i, k=1, \ldots, r, \\
& \sum_{k=1}^{r} x_{i j k}=1 \quad \text { for } \quad i, j=1, \ldots, r \quad \text { and } \\
& x_{i j k} \geq 0 \quad \text { for } \quad i, j, k=1, \ldots, r .
\end{aligned}
$$

## Example: 3-way planar transportation polytopes

## Example



Then $\operatorname{dim} P_{r}=(r-1)^{3}$. By symmetry,
$z_{i j k}=\frac{1}{r} \quad$ for $\quad i, j, k=1, \ldots, r \quad$ and hence $\quad \mathcal{E}(A, b)=\frac{e^{r^{3}}}{r^{(r-1)^{3}}}$
approximates vol $P_{r}$ within a factor of $e^{O\left(r^{2}\right)}$ as $r \longrightarrow+\infty$.

## The main theorem (with M. Rudelson)

## Theorem

- Let $\alpha_{0} \approx 1.398863726$ be the necessarily unique number in the interval $(1,+\infty)$ satisfying

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(1+s^{2}\right)^{-\alpha_{0} / 2} d s=1
$$

Then

$$
\operatorname{vol} P \leq \alpha_{0}^{m / 2} \mathcal{E}(A, b) \leq(1.183)^{m} \mathcal{E}(A, b)
$$

- We have

$$
\begin{aligned}
\operatorname{vol} P & \geq \frac{2 \Gamma\left(\frac{m+2}{2}\right)}{\pi^{m / 2} e^{(m+2) / 2}(m+2)^{m / 2}} \mathcal{E}(A, b) \\
& \approx\left(\frac{1}{e \sqrt{2 \pi}}\right)^{m} \approx(0.14)^{m} \mathcal{E}(a, b)
\end{aligned}
$$

In fact, we can prove

$$
\operatorname{vol} P \geq \gamma^{m} \mathcal{E}(A, b)
$$

for any

$$
\gamma<\frac{1}{\sqrt{2 \pi e}} \approx 0.24
$$

and sufficiently large $m$. The proof requires thin shell estimates (Klartag 2007, Chen 2021, Klartag and Lehec 2022), although pretty much any non-trivial estimate will do.

## Ideas of the proof: the maximum entropy distribution

Recall that a random variable $X$ is standard exponential, if its density is

$$
p_{X}(t)= \begin{cases}e^{-t} & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

The following lemma was proved in Barvinok and Hartigan (2010):

## Lemma

Let $X_{1}, \ldots, X_{n}$ be independent standard exponential random variables and let $z=\left(z_{1}, \ldots, z_{n}\right)$ be the analytic center of $P$. Then the density of the random vector $\left(z_{1} X_{1}, \ldots, z_{n} X_{n}\right)$ is constant on $P$ and equal to

$$
e^{-f(z)}=\frac{e^{-n}}{z_{1} \cdots z_{n}}
$$

## Ideas of the proof: the maximum entropy distribution

The proof is an exercise with Lagrange multipliers. A "deeper" reason why it works is that the distribution of $\left(z_{1} X_{1}, \ldots, z_{n} X_{n}\right)$ is the maximum entropy distribution among all distributions supported on $\mathbb{R}_{+}^{n}$ and with expectation in the affine subspace $A x=b$.

## Corollary

Let $a_{1}, \ldots, a_{n}$ be the columns of $A$, so $A=\left[a_{1}, \ldots, a_{n}\right]$ and let

$$
Y=\sum_{j=1}^{n} z_{j} X_{j} a_{j}=\sum_{j=1}^{n} X_{j} b_{j} \quad \text { where } \quad B=\left[b_{1}, \ldots, b_{n}\right] .
$$

Then

$$
\operatorname{vol} P=e^{f(z)} \sqrt{\operatorname{det} A A^{T}} p_{Y}(b)
$$

where $p$ is the density of $Y$.
Note that

$$
E Y=b \quad \text { and } \quad \operatorname{Cov} Y=B B^{T} .
$$

## Example: Simplex

## Example

Suppose that $P$ is defined by

$$
\sum_{j=1}^{n} a_{j} x_{j}=n \quad \text { and } \quad x_{j} \geq 0 \quad \text { for } \quad j=1, \ldots, n
$$

We have $\quad z_{j}=\frac{1}{a_{j}} \quad$ for $\quad j=1, \ldots, n \quad$ and $\quad Y=\sum_{j=1}^{n} X_{j}$.
Hence

$$
p_{Y}(t)= \begin{cases}\frac{t^{n}}{n!} e^{-t} & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

Then

$$
e^{f(z)} \sqrt{\operatorname{det} A A^{T}} p_{Y}(b)=\frac{n^{n}}{n!a_{1} \cdots a_{n}} \sqrt{a_{1}^{2}+\ldots+a_{n}^{2}}=\operatorname{vol} P
$$

## Ideas of the proof: log-concave isotropic densities

The density $p_{Y}$ of $Y$ is log-concave, and we are interested in $p_{Y}(b)$ where $\mathbf{E} Y=b$. Furthermore, there is some freedom in choosing $A$ :
$A \longmapsto W A, \quad b \longmapsto W b \quad$ and $\quad B \longmapsto W B$,
where $W$ is an $m \times m$ invertible matrix. Then

$$
A A^{T} \longmapsto W\left(A A^{T}\right) W^{T}, \quad B \longmapsto W\left(B B^{T}\right) W^{T}
$$

and

$$
\frac{\sqrt{\operatorname{det} A A^{T}}}{\sqrt{\operatorname{det} B B^{T}}}
$$

does not change. Hence we can assume that $B B^{T}=I$ and

$$
\operatorname{Cov} Y=I
$$

## Ideas of the proof: log-concave isotropic densities

The proof for the lower bound of $p_{Y}(b)$ : applies to all log-concave isotropic densities.
The proof for the upper upper bound of $p_{Y}(b)$ uses the formula for the characteristic function of $Y$ :

$$
\phi_{Y}(t)=\prod_{j=1}^{n} \frac{1}{1-\sqrt{-1}\left\langle b_{j}, t\right\rangle}
$$

and is inspired by the proof of Ball (1989) of the upper bound for the volume of a section of the cube (but easier).

Recall the corollary: if $X_{1}, \ldots, X_{n}$ are independent standard exponential,

$$
Y=\sum_{j=1}^{n} z_{j} X_{j} a_{j}=\sum_{j=1}^{n} X_{j} b_{j}
$$

then $\operatorname{vol} P=e^{f(z)} \sqrt{\operatorname{det} A A^{T}} p_{Y}(b)$. In addition,

$$
E Y=b \quad \text { and } \quad \operatorname{Cov} Y=B B^{T}
$$

It stands to reason that, being a sum of independent random variables, $Y$ is close to Gaussian, and hence

$$
p_{Y}(b) \approx \frac{1}{(2 \pi)^{m / 2} \sqrt{\operatorname{det} B B^{T}}} \quad \text { and } \quad \operatorname{vol} P \approx \frac{e^{f(z)} \sqrt{\operatorname{det} A A^{T}}}{(2 \pi)^{m / 2} \sqrt{\operatorname{det} B B^{T}}}
$$

Barvinok and Hartigan $(2010,2012)$ showed that this indeed holds asymptotically for some families of polyhedra, sometimes with the "Edgeworth correction" factor (like $e^{1 / 3}$ for the polytope of doubly stochastic matrices).

## Counting integer points: the Gaussian formula

Suppose we want to count integer points in $P=\{x \geq 0: A x=b\}$ (assume that $A$ and $b$ are integer). Consider the function

$$
g(x)=(x+1) \ln (x+1)-x \ln x \quad \text { for } \quad x \geq 0
$$



Remark: $g(x)$ is the maximum entropy of a probability distribution (necessarily geometric) on $\mathbb{Z}_{+}$with expectation $x$ :

$$
\begin{aligned}
& \mathbf{P}(X=k)=p q^{k} \quad \text { for } \quad k=0,1, \ldots \\
& \mathbf{E} X=\frac{q}{p}:=x, \quad \text { var } X=\frac{q}{p^{2}}=x+x^{2}
\end{aligned}
$$

## Counting integer points: the Gaussian formula

In Barvinok and Hartigan (2010), we prove:

## Lemma

Let $z=\left(z_{1}, \ldots, z_{n}\right)$ be the necessarily unique point where the concave function

$$
g(x)=\sum_{j=1}^{n} g\left(x_{j}\right) \quad \text { for } \quad x=\left(x_{1}, \ldots, x_{n}\right)
$$

attains its maximum on $P$. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be the vector of independent geometric random variables with

$$
\mathbf{E}\left(X_{j}\right)=z_{j} \quad \text { for } \quad j=1, \ldots, n .
$$

Then the probability mass function of $X$ is constant on the points $P \cap \mathbb{Z}^{n}$ and equal to $e^{-g(z)}$.

## Counting integer points: the Gaussian formula

The distribution of $X$ is the maximum entropy distribution supported on $\mathbb{Z}_{+}^{n}$ and with expectation in the affine subspace $A x=b$.
Let $a_{1}, \ldots, a_{n}$ be the columns of $A$. We let

$$
Y=\sum_{j=1}^{n} X_{j} a_{j}
$$

and conclude that

$$
\left|P \cap \mathbb{Z}^{n}\right|=e^{g(z)} \mathbf{P}(Y=b)
$$

Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ with rank $A=m<n$, we compute the $m \times m$ matrix $B=\left(b_{i j}\right)$ by

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k}\left(z_{k}+z_{k}^{2}\right)
$$

so that $\mathbf{E} Y=b$ and $\operatorname{Cov} Y=B$.

## Counting integer points: the Gaussian formula

Assuming that $Y$ is close to Gaussian, we get the following estimate for $\left|P \cap \mathbb{Z}^{n}\right|$, where $P=\{x \geq 0: A x=b\}$ :

$$
\mathcal{E}_{I}=\frac{e^{g(z)} \operatorname{det} \Lambda}{(2 \pi)^{m / 2} \sqrt{\operatorname{det} B}}
$$

where $\Lambda \subset \mathbb{Z}^{m}$ is the lattice generated by the columns of $A$. In a similar way, we can get an estimate for the number of 0-1 points in $P$. The function $g$ is replaced by

$$
h(x)=x \ln \frac{1}{x}+(1-x) \ln \frac{1}{1-x} \quad \text { for } \quad 0 \leq x \leq 1
$$

and $B$ is computed as follows:

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k}\left(z_{k}-z_{k}^{2}\right) .
$$

## The Gaussian formula for integer points: example

## Example

The number of $4 \times 4$ non-negative integer matrices with row sums [ $220,215,93,64]$ and column sums [ $108,286,71,127]$ is
$1,225,914,276,768,514 \approx 1.2 \times 10^{15}$ (Diaconis and Efron, 1985). The value of $\mathcal{E}_{l}(A, b)$ approximates it within relative error of 0.06 (De Loera, 2009).

|  | 108 | 286 | 71 | 127 |
| :---: | :---: | :---: | :---: | :---: |
| 220 | $*$ | $*$ | $*$ | $*$ |
| 215 | $*$ | $*$ | $*$ | $*$ |
| 93 | $*$ | $*$ | $*$ | $*$ |
| 64 | $*$ | $*$ | $*$ | $*$ |

Here $Y$ is a sum of 16 independent 7 -vectors.

## The Gaussian formula for integer points: example

## Example

The number of $3 \times 3 \times 3$ non-negative integer arrays with slice sums [31, 22, 87], [ $50,13,77$ ] and [42, 97, 11] is $8,846,838,772,161,591 \approx 8.8 \times 10^{15}$. The value of $\mathcal{E}_{l}(A, b)$ approximates it within relative error 0.002 (De Loera 2009).


Here $Y$ is the sum of 27 independent 7 -vectors.

